

标准物质证书

天然放射性环境分析标准物质

样品编号 定值日期 **2004** 年 **4** 月

成都理工大学 中国 成都

一、样品采集与制备

GBW(E)××××(TRK)由钾长石制成;其他样品由采自天然的原料和石英砂混合而成, 基质以石英砂为主。

样品用高铝瓷球磨机制备,并在 120℃下烘干 24 小时,以去水、灭菌。颗粒小于 0.1mm 的在 92%以上。

二、均匀性和稳定性检测

用中子活化方法,60mg 用样量,测定 TRU 中的 U 元素,TRT 中的 Th 元素,TRH 中的 U 和 Th 元素,进行均匀性检测,证明均匀性良好。用样量 2g 时,用 X 荧光分析方法测试 TRK 中的元素 K,通过均匀性检测。

经过半年以上的中子活化方法跟踪分析检验,以及振动试验,证明样品稳定性良好。

三、定值元素与标准值

元素的定值分为标准值和参考值,以元素的物质的质量分数表示。

确定标准值的条件为采用 2 种及 2 种以上原理独立的可靠测试方法,或 1 种权威分析方法,参加定值的数据组数不少于 5 个,平均值的不确定度(按 X±s/X 计算, X 为平均值, s 为标准偏差)符合如下要求:

物质的质量分数	相对不确定度	物质的质量分数	相对不确定度
$1 \sim 15 \times 10^{-2} \text{g/g}$	≤ 7.5%	$0.1 \sim 10 \times 10^{-6} \text{g/g}$	€20%
$0.1 \sim 1 \times 10^{-2} \text{g/g}$	≤10%	$<0.1 \times 10^{-6} \text{g/g}$	€20%
$10 \sim 1000 \times 10^{-6} \text{g/g}$	≤15%		

不完全满足上述条件的元素为参考值。

定值元素的标准值列于表 1,参考值列于表 2,等效的放射性核素的比活度信息列于表 3,各元素测试情况见表 4。

四、使用注意事项

- 1. 样品使用聚乙烯塑料瓶包装,250克/瓶和400克/瓶两种。
- 2. 样品放于低温阴凉处保存,是用前在 105℃下烘干 2 小时,最好长期密封于样品盒内备用。
- 3. TRU 的铀系射气(²²²Rn) 析出率为 28.5%, TRH 的铀系射气析出率为 1.12%。若用户需要,标准物质研究单位可利用专利技术使 TRU 的铀系射气析出率降至 5.0%, TRH 的铀系射气析出率降至 0.98%。
- 4. TRU、TRT、TRH 最小用样量 60mg; TRK 的最小用样量为 2g。

五、研制及定值测试单位

本套标准物质由成都理工大学负责研制,由中国地质科学院地球物理地球化学勘查研究所参加样品研磨加工。参与定测试的单位铀:中国地质大学(北京)辐射与环境实验室、中国地质科学院地球物理地球化学勘查研究院、中国原子能科学研究院 29 室、中国疾病预防控制中心辐射防护与核安全医学所、四川大学物理科学与技术学院和物理实验室、四川省辐射环境管理检测中心站、核工业北京地质研究院分析测试研究中心,共九个单位。

表 1 天然放射性环境分析系列标准物质标准值

	T		, , , , , , , , , , , , , , , , , , , ,	
标准物质名称	元素	单位(g/g)	标准值物质的质量分数	数据数
铀放射性环境分析标准物质	U	10 ⁻⁶	186 ± 15	6
$GBW(E) \times \times \times \times (TRU)$	Ra	10^{-11}	6.18 ± 0.80	5
钍放射性环境分析标准物质	Th	10 ⁻⁶	157 ± 15	8
$GBW(E) \times \times \times \times (TRU)$	Ra	10^{-12}	5.18 ± 0.26	5
钾放射性环境分析标准物质	K	10 ⁻²	11.67 ± 0.53	8
$GBW(E) \times \times \times \times (TRU)$	Th	10^{-6}	21.1 ± 2.1	8
	U	10 ⁻⁶	103 ± 15	6
天然放射性环境分析标准物质	Ra	10^{-11}	4.12 ± 0.35	5
$GBW(E) \times \times \times \times (TRU)$	Th	10^{-6}	117 ± 14	7
	K	10^{-2}	4.82 ± 0.36	6
	1			

注:表1种标准值表示为标准值±95%置信区间,95支新区间的计算公式为:

$$(X \pm \frac{s}{n^{1/2}} t_{a/2(n-1)})$$

式中: x ——平均值; s ——标准偏差; ——数据组数; t 由 t 分布表给处, a 取 5%。

表 2 天然放射性环境分析系列标准物质参考值

标准物质名称	元素	单位(g/g)	标准值物质的质量分数	数据数
铀放射性环境分析标准物质	Th	10 ⁻⁶	1.14	3
$GBW(E) \times \times \times \times (TRU)$	K	10^{-2}	0.20	7
钍放射性环境分析标准物质	U	10 ⁻⁶	15.0	7
$GBW(E) \times \times \times \times (TRU)$	K	10 ⁻²	0.052	5
钾放射性环境分析标准物质	U	10 ⁻⁶	1.42	3
$GBW(E) \times \times \times \times (TRU)$	Ra	10^{-13}	3.58	4

表3 天然放射性环境分析系列标准物质中放射性核素比活度

标准物质名称	天然放射性核素比活度(Bq/kg)			(g)
	²³⁸ U	²²⁶ Ra	²³² Th	⁴⁰ K
铀放射性环境分析标准物质	230×10	226×10	(4.65)	(59.8)
$GBW(E) \times \times \times \times (TRU)$	$\pm 19 \times 10$	$\pm 30 \times 10$		
钍放射性环境分析标准物质	(186)	190 ±10	639±57	(15.8)
$GBW(E) \times \times \times \times (TRU)$				
钾放射性环境分析标准物质	(17.5)	(13.1)	85.9 ± 8.6	353×10
$GBW(E) \times \times \times \times (TRU)$				$\pm 16 \times 10$
天然放射性环境分析标准物质	128×10	151×10	476 ± 58	146×10
$GBW(E) \times \times \times \times (TRU)$	$\pm 19 \times 10$	$\pm 13 \times 10$		$\pm 11 \times 10$

注;表3种标准值等效的比活度表示为"比活度±95%置信区间",参考值等效的比活度用"()"加注。

比活度与物质的质量分数间的转化如公式:

$$\mathbf{C} = \frac{\lambda \cdot \theta \cdot Q}{\mathbf{A}} \times 6.023 \times 10^{26} \qquad \lambda = \frac{\ln 2}{T_{1/2}}$$

式中: C——放射性核素的放射性比活度, Bg • kg⁻¹;

Q——目标元素的物质值量分数, g • g⁻¹;

θ ——目标元素的放射性核素的丰度, %;

A——放射性核素的原子量, g·mol⁻¹;

λ ——放射性核素的衰变常数, s⁻¹;

T——放射性核素的半衰期, s。

表 3 各元素测试情况

元素	测试方法	及其所提供的数据组数	女
U	天然 Y 能谱测量(11)	中子化分析(8)	等离子质谱(3)
Ra	天然γ能谱测量(19)		
Th	天然 Y 能谱测量(15)	中子化分析(8)	等离子质谱(3)
K	天然γ能谱测量(13)	中子化分析(8)	原子吸收光谱(6)荧光(1)